Fast Voltage and Power Flow Contingencies Ranking using Enhanced Radial Basis Function Neural Network
نویسندگان
چکیده
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of the contingencies expected to cause steady state bus voltage and power flow violations. Hidden layer units (neurons) have been selected with the growing and pruning algorithm which has the superiority of being able to choose optimal unit’s center and width (radius). A feature preference technique-based class separability index and correlation coefficient has been employed to identify the relevant inputs for the neural network. The advantages of this method are simplicity of algorithm and high accuracy in classification. The effectiveness of the proposed approach has been demonstrated on IEEE 14-bus power system.
منابع مشابه
Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملOptimized Voltage Stability for Maximum Loadability Using Neural Networks
This paper proposes a Neural Network-Based method for on-line maximum loadability estimation, for an optimized power system voltage stability profile. A simulated annealing optimization technique for optimal voltage stability profile through out the whole power network was used. The minimization of the voltage stability index at each individual load bus as well as the global voltage stability i...
متن کاملOnline Power System Contingency Screening and Ranking Methods Using Radial Basis Neural Networks
This paper presents a supervising learning approach using Multilayer Feed Forward Neural Network(MFFN) and Radial Basis Fuction Neural Network(RBFN) to deal with fast and accurate static security assessment (SSA) and contingency analysis of a large electric power systems. The degree of severity of contingencies is measured by two scalar performance indices (PIs): Voltage-reactive power performa...
متن کاملHybrid fuzzy-neural network-based composite contingency ranking employing fuzzy curves for feature selection
Maintaining power system security in the deregulated and unbundled electricity market is a challenging task for power system engineers. The idea is to short-list critical contingencies from a large list of contingencies and to rank the contingencies expected to drive the system towards instability. Timely corrective measures can then be planned to save the system from collapse and blackout. Thi...
متن کاملOn-line Load Flow Analysis Using Radial Basis Neural Network
Load flow (LF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a radial basis function neural network (RBFN) is propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011